LAPANLAPAN

Jurnal Teknologi DirgantaraJurnal Teknologi Dirgantara

Honeycomb sandwich structures are widely used in space applications due to their exceptional performance. Extensive research has been conducted on the response of honeycomb structures to various external loads. The out-of-plane strength, including compression and tensile properties, is a critical aspect of honeycomb structures. Despite some experimental and numerical studies, research specifically addressing the tensile direction, such as flatwise tensile testing in honeycombs, remains limited. This testing focuses on the bond strength between the face sheets and the honeycomb core, as well as the tensile strength of the core itself. Utilizing finite element analysis (FEA) has proven effective for characterizing honeycomb structures under various load conditions. However, the complex geometry of the core requires an enormous number of elements, increasing computation times. Thus, simplifying the model by replacing the hexagonal geometry with a homogenized solid layer with effective material properties is necessary. This study focuses on flatwise tensile testing of aluminum honeycomb using different modeling approaches: discrete, continuum, and equivalent plate models. The discrete model serves as the reference due to its detailed structural representation. The continuum-Gibson model, while reasonably accurate in stress estimation, tends to overestimate displacement. Both equivalent models, Hoff and Reissner, significantly overestimate displacement, with Hoff underestimating stress and Reissner overestimating it. In contrast, equivalent models offer insights, but their accuracy varies, necessitating further calibration for precise predictions. Future research should validate these simulation results with real tests.

The study reviewed various modeling approaches for FEA analysis of honeycomb structures under flatwise tensile testing, including discrete, continuum, and equivalent plate modeling.The discrete model was used as a reference point for comparison.The continuum-Gibson model showed reasonable accuracy in stress estimation but tended to overestimate displacement.Both equivalent models, Hoff and Reissner, significantly overestimated displacement, with differing stress estimation accuracies, indicating a need for further calibration for precise predictions.

Penelitian lebih lanjut perlu dilakukan untuk memvalidasi hasil simulasi dengan pengujian nyata pada struktur honeycomb aluminium. Selain itu, studi komprehensif mengenai pengaruh variasi geometri sel honeycomb, seperti ukuran sel dan ketebalan dinding, terhadap kekuatan tarik perlu dilakukan untuk mengoptimalkan desain struktur. Pengembangan model FEA yang lebih akurat, yang mampu memperhitungkan efek non-linear material dan interaksi antara face sheet dan core dengan lebih detail, juga sangat penting. Penelitian ini dapat dilakukan dengan membandingkan berbagai metode homogenisasi dan mempertimbangkan penggunaan material yang berbeda untuk face sheet dan core, sehingga menghasilkan pemahaman yang lebih mendalam tentang perilaku struktur honeycomb dalam kondisi beban tarik dan memberikan dasar yang kuat untuk pengembangan aplikasi ruang angkasa yang lebih efisien dan andal.

  1. #critical aspect honeycomb#critical aspect honeycomb
File size814.33 KB
Pages9
DMCAReportReport

ads-block-test