IAESONLINEIAESONLINE

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Lung diseases represent a major public health concern, requiring timely and accurate diagnosis. Chest X-rays are widely used for initial screening, but manual interpretation is time-consuming and subject to variability among radiologists. To address these challenges, this study presents an automated deep learning-based framework for multi-class lung disease detection. The proposed approach integrates five convolutional neural network (CNN) architectures—EfficientNetB0, DenseNet201, ResNet50, MobileNetV2, and InceptionV3—within a hard-voting ensemble classifier to improve diagnostic performance. Transfer learning is applied to extract deep features from chest X-ray (CXR) images, and the ensemble strategy enhances overall accuracy compared to individual models. The system was evaluated into six categories, including normal, COVID-19, tuberculosis, opacity, bacterial pneumonia, and viral pneumonia. Results demonstrate that the ensemble achieves approximately 97% accuracy, outperforming current state-of-the-art methods. Furthermore, the model shows strong capability in differentiating bacteria from viral pneumonia, underscoring its potential as a reliable tool for automated lung disease diagnosis in clinical practice.

Dalam penelitian ini, diusulkan model berbasis ensemble CNN yang menggunakan hard voting untuk mendeteksi berbagai jenis penyakit paru dari gambar X-ray dada.Model ini melibatkan lima arsitektur CNN terkenal yaitu EfficientNetB0, DenseNet201, ResNet50, MobileNetV2, dan InceptionV3.Menggunakan transfer learning, fitur-fitur dalam X-ray dada diekstraksi dan disempurnakan dengan menggunakan hard voting ensemble.Hasil penelitian menunjukkan bahwa model ensemble ini mencapai akurasi sekitar 97%, melebihi metode-metode terbaik saat ini.Selain itu, model ini memiliki kemampuan yang baik dalam membedakan pneumonia bakteri dan virus.

Untuk penelitian lanjutan, perlu dilakukan penelitian lebih jauh mengenai model CNN yang dapat menangani variabel variasi gambar X-ray jambatan dada dan mengidentifikasi penyakit paru dengan kelas yang kurang perwakilan di dataset. Salah satu arah penelitian yang dapat ditempuh adalah investigasi terhadap penggunaan data augmentasi untuk mempelajari variasi dalam data medis, inti guna memperbaiki perwakilan kelas yang beragam dan meningkatkan kinerja model. Selanjutnya, penelitian lanjutan juga perlu mempertimbangkan integrasi model dengan sistem diagnostik berbasis konsolidasi data medis yang lebih besar, sehingga dapat mengintegrasikan hasil deteksi dari berbagai modalitas gambar medis. Penelitian harus juga mempertimbangkan aspek rekayasa yang dapat memaksimalkan model ensemble untuk aplikasi klinis, termasuk evaluasi performa real-time dan implementasi di berbagai lingkungan klien.

  1. Covid-19 detection using modified xception transfer learning approach from computed tomography images... doi.org/10.26555/ijain.v9i3.1432Covid 19 detection using modified xception transfer learning approach from computed tomography images doi 10 26555 ijain v9i3 1432
  2. ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19 [PeerJ]. ecovnet... peerj.com/articles/cs-551ECOVNet a highly effective ensemble based deep learning model for detecting COVID 19 PeerJ ecovnet peerj articles cs 551
  1. #cloud computing#cloud computing
  2. #intrusion detection#intrusion detection
Read online
File size1.63 MB
Pages20
Short Linkhttps://juris.id/p-3qD
Lookup LinksGoogle ScholarGoogle Scholar, Semantic ScholarSemantic Scholar, CORE.ac.ukCORE.ac.uk, WorldcatWorldcat, ZenodoZenodo, Research GateResearch Gate, Academia.eduAcademia.edu, OpenAlexOpenAlex, Hollis HarvardHollis Harvard
DMCAReport

Related /

ads-block-test